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We propose a spectral-difference method for the 2-dimensional vorticity equation with a 
periodic boundary condition in one direction. The solution satisfies a semidiscrete conserva- 
tion law, and thus better numerical results are obtained. We also prove stability and 
convergence. 0 1989 Academic Press, Inc. 

I. INTRODUCTION 

Let 5(x,, x1, t) and $(x1, x2, t) be the vorticity and stream function, respectively. 
Let the coefficient of viscosity v be positive. Let B = Ix z where 

z= {x,:O<x, <l}, 7= {x,:O<x, <27c}, 

and consider the problem 

at w at a* at 
at+ZFax ---j-;i;T-vVT=.f1 in Sz x (0, T], 

2 1 1 2 

-v'*=t+f, in 52 x (0, T], 

5(x1 7 x27 t) = 5(x1 > x2 + 27b t) for t30, (1.1) 

WI, x2, t) = VW,, x2 + 271, f) for t>O, 

5(x1, x2,0) = 5&, , x2) in a, 

where 

f/b,, x2 +27b t)=fi(X1,X2r t) for I= 1,2, 

50(x,, x2 + 2x)= <0(x1 3 x2). 

For simplicity we assume that 

ao, x2, t) = al, x2, t) = $(O, x2, t) = @(l, x2, t) = 0. 
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260 GUOANDXIONG 

There is a lot of literature concerning finite element and finite difference methods 
to solve problem (1.1). But for any fixed scheme the accuracy of the solution is 
limited, even if the solution is infinitely smooth. In the past ten years the spectral 
method has been developed. See the references by Gottlieb and Orszag [ 11, 
Pasciak [2], Kreiss and Oliger [S], Ben-yu Guo [6], and He-ping Ma and Ben-yu 
Guo [7]. All of this work is for periodic problems, and thus it may not be applied 
to solve (1.1). On the other hand, Murdock [9, lo] and Vanel, Peyret, and 
Bontoux [ 111 used Chebyshev spectral methods to solve it. In this paper we follow 
the idea of [8] to construct a class of spectral-difference schemes. for solving (1.1). 
The key point is the use of a skew symmetric decomposition of the nonlinear 
convection terms. If we choose the parameters suitably, then the numerical solution 
satisfies semidiscrete conservation laws. Generalized stability (see Ben-yu Guo [ 121 
and Grifliths [13]) and convergence are proved. We find out that better error 
estimates are obtained by using the skew symmetric decomposition with suitable 
parameters. 

II. THE SCHEME AND CONSERVATION LAWS 

Let h be the mesh spacing in the x,-direction with Mh = 1, and let 

Z,=(x,=jh:l<j<M-1) and Q,=I,xZ 

Let r be the mesh spacing in the r-direction, and let S, = {t = kz: k = 0, 1, . ..}. 
Define 

2 

Au= u,,&I, ~2, t) +$ (x,, x2, t), 
2 

1 
u, = - (U(XI, x2, t + T) - 4x, 9 x2, t)). T 

The key problem in the construction of a reasonable scheme is to simulate as 
much as possible the properties of the solution of ( 1.1). Indeed, if f, = f2 = 0, then 

I I I h-19 x2, t) dx, dx, - v ii( x 
~27 A-z (0, ~29 Y) > dxz d! R o I 1 

= s s 5&1> x2) dx, dx, (2.1) R 
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and 

II 
t2(xI, x2, t) dx, dx, 

a 

dx, dx2 dy 

= il t;;(x,, x2) dx, dx,. (2.2) 
12 

We shall construct a scheme, the solution of which satisfies semidiscrete conser- 
vation laws. Note that 

~~-~~=&(~+&(~~) 

We therefore define 

J,(u, w) = g 24q - w.& -g, 
2 2 

Jz(u, w)= -gu ( ) -2 i, --& (Wi,U)> 
2 

J,(u, wl=-&(wuf,)- WE _ 3 
2 ( ) 2 XI 

and 

P(U, W)’ i a,J,(u, w), 
I= I 

where a=(al, u2, a,), each a, is positive, and C al = 1. 
Now let 

V, = span(exp{inxz}: (n( <NJ, 

and let PN be the orthogonal projection operation onto V,, i.e., 

I (P,u-u)odx, =0 
7 

for all u E V,. Let qCN) and q5 V) be the approximations to < and $, respectively, 
where 
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P)(x,, x2, t) = 1 ql;“/‘(x,, t) exp{inx,}, 
InI <N 

fW(x,, x2, t) = C q5LN)(x1, t) exp{inx,}. 
lnl =s N 

The spectral-difference scheme for (1.1) is 

fp + P,p(tp + 6rtp, q3’N’) - v A(v]‘~‘+ azujN’) = PNfi in 52, x S,, 

-A# (N)=q(N)+PNf2 in 0, xS,, 

+yO, x2, t) = ry’( 1, x2, t) = qP’(O, x2, t) = qP’( 1, x2, t), (2.3) 

~(N)(~1,~2,0)=~bN)(~I,~2)=~N50(~1,~2) in ah, 

where 6 and (T are parameters such that 0 d 6, u d 1. If 6 = 0 = 0, then (2.3) is an 
explicit scheme. Otherwise, we need iteration to get qCN)(xl, x2, 1) for each t E S,. 

Now we introduce some notations as follows: 

IbJll 2 = (U> u), 

2 

14: =; llu,,/‘ft IIU,, 112+ g . 
!I II 2 

Assume ZJ = v = w = 0 for x1 = 0 or 1 and that U, U, and w are periodic in x2. 
From Abel’s formula we obtain 

(hl 3 u) + (Vi., , u) = 0, (2.4) 

which lead to 

(J~(~,w),l)=(~,u~‘)+((~)il.U)=o, 
(J,(u, WI, I)=((+& l)=A(u, w), 

(2.6) 

(2.7) 

(J,(u, w), I)= -A(w,u)=A(u, w), (2.8) 
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where 

u(l-h),$(l-h) 
2 

)7-f (4’4 $ W), 

We have also from (2.4) and (2.5) that 

(~u~,,u)+((~v)~,,U)=o, 

(W?., -g, v) + ($ k& u) =a 
2 2 

Thus, it follows that 

Similarly, we have 

(Jl(4 WI, u) + (J2(v, WI, u) = 0. (2.9) 

(2.10) 

From (2.6)-(2.10) we have 

(J@)(u, ~1, 1) = (a2 + aA 44 ~1, (2.11) 

(J’“‘(u, w), 0) + (J’“‘(u, w), u) = (a1 -a*) 

x C(JZ(V> WI, u) + V2(% WI, v)l. (2.12) 

In particular, if al = a2, then 

(J’“‘(u, w), u) = 0. 

It is easy to show that 

+ g,g +S(u,v)=O, ( > 2 2 
(2.13) 

where 

S(u, v) = & (u(h), v(h))7 + & (41 - h), l.41 - h))7. 

In particular, with the notation S(U) = S(u, U) we have 

(Au, u) + IUI: + S(u) = 0. (2.14) 



264 GUOANDXIONG 

We next check the conservation laws. Assume that fi = f2 = 0. We first sum (2.3) 
over all (x1, x,)EQ~ to get from (2.11) and (2.13) that 

WN)(d, I), + (6 + 4) m’N’(f) + ~v!N’(~), d’N’(f)) 

- vS( tjCN’( t) + a7tj )“‘( t ), 1) = 0, 

and thus 

WN’(O> 1)) + 7 c [(a* + %I A9’N’(Y) + hjN’(J4 4’“‘(y)) 
Y E & y=s--r 

-vS(f+N’(y) + a7q;N)(y), l)] = (r+N)(O), 1). (2.15) 

Second, we put a, = t12 and 6 = rs = 1 to get 

q(N)(Xl, x2, f) = $(q’N’(X,, x2, t) + qtN)(X,, x2, r + 7)). 

By taking the scalar product of the first formula of (2.3) with 2tcN’, we have from 
(2.12), (2.13), and (2.14) that 

Ilrf’N’(t)llf+2v I~‘N’(t)l:+2vs(~‘N’(t))=o; 

thus 

(l’l(N)(t)112 + 2~7 c [l~‘~‘(t)l: + s(ri’N’(f))l = IbtN’(0)l12~ (2.16) 
YCSr 

yir--r 

Clearly, (2.15) and (2.16) are reasonable analogues of (2.1) and (2.2), respectively. 

III. NUMERICAL RESULTS 

For convenience we take 52 = (0, 1) x (0, 1) and 6 = 0 = 0 in our computation. We 
deal with the problem with periodic boundary conditions in the x,-direction and 
Dirichlet boundary conditions in the x,-direction. 

Let lh = {x2: x2 =jh, O<j<N-- l}, and define 

Em(t) = (x,,mf;hx7h 15(x,, x2> t)-v(x1, x2, t)l, 

c 15(x1,x,, t)--?(x,,x,, t)12)IJ2, 
(%XZ)EIhX7h 

where q(x,, x2, t) is the spectral-difference (or difference) approximation to 
ax1 3 x2, t). 
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In this section we list two tables for two kinds of flows. All of our experiments 
are for a, = 01~. 

EXAMPLE 1. Let 

5(x,, x2, t) = A exp{B sin(2rcx, + Cx,) + wt}, 

VW,, x2, t) = A exp{ot)(sin 2nx, + Cx,). 

The numerical results are shown in Table I. These results are for scheme (2.3) at 
t=l for A=C=o=O.l, B=O.Ol, and r=v=O.OOl. It is obvious that if we take 
a1 =a23 then the solutions satisfy semidiscrete conservation laws, and better 
numerical results are obtained. Usually we take a1 = CI = i or c(~ = a2 = a3 = i as in 
[3, 141. Arakawa [ 141 also analyzed the advantages of such choices. Table I also 
shows that we get good results even for small N. 

EXAMPLE 2. Let 

(!(x,, x2, t) = A exp(B sin(2rrx, + Cx,) + wt>, 

$(x1,x2, t)=Aexp{ot} sin2rcx,sin Cx,. 

We first use the spectral-difference scheme (2.3) to solve the 2-dimensional vorticity 
equation. For the sake of comparsion we use the difference scheme of [3] to solve 
the same problem. Let I; = 2n/li;i and let $2;; be the set of lattice points in Q. We 
define 

TABLE I 

Errors for Scheme (2.3) 

(aI, az. 4 

M= 10, N=4 M=lO, N=8 

E,(f) x 10’ E,(r) x 10’ E,(r) x 10) E,(f) x 10’ 

(1,&O) 0.3460 0.8759 0.3484 0.8658 
(4, t, 0) 0.2217 0.6949 0.1906 0.5465 
0, f, j, 0.2822 0.8696 0.1942 0.5118 
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TABLE II 

Errors for Schemes (2.3) and (3.1) 

(al, a,, a2) 

Scheme (2.3) 
M= 10, N=4 

E*(t) x lo3 

Scheme (3.1) 
M= 10, &!f= 10 

E,(r) x lo3 

(LO, 0) 0.1753 0.2133 
(f, $7 0) 0.1621 0.2141 
(4, f, f, 0.1501 0.2138 

and 

where tli +a, +cr, = 1 and a, 80 for I= 1, 2, 3. Let qh and dh be the finite 
difference approximations to 5 and (I/, respectively. The difference scheme is [3] 

The numerical results by using schemes (2.3) and (3.1) with 6 = cr = 0 are shown in 
Table II. These results are taken at t = 1 for A = B = C = o = 0.1 and t = v = 0.001. 
It can be seen that the spectral-difference scheme (2.3) can give better results than 
the difference scheme (3.1). 

IV. SOME LEMMAS 

In order to estimate the error, we need some lemmas. 

LEMMA 1. For all u(xl, x2, t) we have 

2(u(t), 4(t)), = (Ilwll:L - 7 ll~mll:~ 

W(t), %(f)) = (l14t)l12)t -T Il~,(~)l12. 
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LEMMA 2. Zf ~(0, x2, t) = u( 1, x2, t) = 0 and u(xl, x2, t) = u(x,, x2 + 271, t), then 

-2(%(t), Mf)) = -2(u(t), h(t)) 

= Clwl: + s(dt))l, - 7 I%(# - US. 

LEMMA 3. Zf uE V, for x1 EZ,,, then 

Proof: Let 

Then 

4kx2)= C u,h)ex~{i~x~~. 
In1 i N 

au -= 
ax2 

i 1 nu,(x,) exp(inx2}, 
Inl <N 

and thus 

LEMMA 4. Zf u(O,x,,t)=u(l,x,,t)=O, then 

Proof. We prove the first conclusion. Because 

l~x,Cx,,~2)1*=j$l~(x, +h,x2)-4x1,x2)12 

+I~Q +k x2)1*+ W,, x,)1*), 

it follows that 

II~x,bdIl: +lMx, +Wl: + ll4x,,ll:h Ilu,,ll*~~ Il41*. 

LEMMA 5. Zf for all x1 E I,, we have u(xl, x2) and u(x,, x2) E V,, then 
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Proof: Let 

4x,, .x2)= C ~,(x,)exp{inx,). 
lnl < N 

Then we have from [7] that 

IW,) ew: c(2N+ 1) IMM: Ir4a:. 

From Jensen’s inequality we obtain 

<WN+ 1) 1 rl4alf lr~c~,>llf 
X, E I,, 

LEMMA 6. If u(x,, X*)E V,,, for x1 EZ~ and ~(0, x2) = ~(1, x,)=0, then (lu((*< 
C,( IuI f + S(u)), where C, is a positive constant depending on Q,. 

ProoJ We consider the eigenvalue problem 

-Au=& in sZh, 

4x1, x2) = 4x,, x2 + 271) in a,, 

u(0, x2) = u( 1, x2) = 0 for x2 E?. 

By taking the scalar product of the above equation with U, we have from (2.14) that 

and thus 

11~1126- ,il, A b4: + S(u)). 
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LEMMA 7 [15]. rfO<p<p andu~H~(I”), then 

llP44 - 4IW(7) G CNp-8 ll4HS(7,~ IIKd4lffr(l”) G c II4 W(7). 

LEMMA 8 [3]. Assume that the foZlowing conditions are satisfied: 

(1) Z(t) is a nonnegative function defined on S,. 
(2) p, a, b, M,, MZ, and M3 are nonnegative constants. 
(3) H(Z) is a function such that if Z 6 M,, then H(Z) < 0. 
(4) For all t E S,, 

Z(t)<p+z 1 [M,Z(y)+M,N”h-bZ2(y)+H(Z(y))]. 
Y E ST 

y<t--r 

(5) Z(O)dp and 

pexp((M, +M2)t)<min(M,,hb/N”). 

Then for all t 6 T we have 

In particular, if M, = 0 and H(Z) d 0, then for all p and t, Z(t) < p exp(A4, t}. 

V. ERROR ESTIMATION 

Let &I be a Banach space and let 

IIM~ =oy,a~T I14r)lla. . . 

Define 

Ilu(t m = x,~~E7* WI? x2> t)lt 

l4t)l l.c.2 = max 
J, E I)& x2 E ?h ( 

bX,(XI~ x*9 t)lt IU,,(XI, x2, t)l, g (XI, x2, t) 
2 I) 

Ilu(t 1,m = Il4~)ll m + l4t)l I.30 3 

III~III 1.00 = y-yy Ilu(t l,co. 

Assume that a, = a2, that z = O(h*), that z = 0( l/N*) and that 

ip(0, x2, t) = py 1, x2, t) = pyo, x2, t) = $“yl, x1, t) = 0. 
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If fr , f2, and &, have the errors 7,) &, and r,,, respectively, then we get the solution 
rl -(w and #N) satisfying 

fy’+ p,J’*‘(f’N’ + &jjN’, (p’) 

-vd(ri’N’+atrllN))=PN(f, +YJ in Sz, xS,, 

-Lf(FN’ = qN) + P&2 + y*T,, in 0, xS,, 

fYNh x290) = PN(SO(X1, x2) + %(x,, 4) in 8,. 

Let j-j(N) = ,jW) _ +V and $(N) = $(N) - tiCN). Then it follows that 

q;“‘+ p,~‘*‘(q’N’+ &$N’, @W + $$‘“‘) 

+ PNJ’“‘(t+N’ + OTr/ IN’, JcN’) - v d(ijcN’+ djjN)) = PNJ; in 0, x S,, 

- &‘N’ = jp + pNT2 in 52, xS,, 

r?tN)tx,, x2~ O) = pN~O,(x,~ x2) in a,. (5.1) 

By taking the scalar product of the first equation of (5.1) with 2FjCN’, we get from 
Lemmas 1 and 2 and from Eqs. (2.12) and (2.13) that 

Ilq’N’(c)llf-T Il~~N’(c)l12-26T(~~N’(c),J’“‘(q’N’(c),$TN)(c))) 

+ 2(V( t), J’“‘(q’N’( t) + dTr/+jN’( t), pN’( t))) 

- 26z(fp( t), J(=‘(ij-‘N’( t), cfN’( c))) f 

+2v(Jrl”‘N’(c)l:+S(~(N)(c))) 

+v~t(I~(N)(c)l:+S(~(N)(c))t) 

- VtTT2( Iqj”‘(c)l: + S(qjN’(c))) 

= 2WN’(t), jm). (5.2) 

Let m be a positive constant which will be determined later. By taking the scalar 
product of the first equation of (5.1) with m#“‘(t), we obtain from Lemmas 1 and 
2 and from (2.12) that 

mz Ilfj~N’(t)l12 + mr(fji”‘(t), J’“‘(ij’N’(t), JcN’(t))) 

+ rnT(ijiN’( t), J(a)(#N’( t), qbcN’( t))) 

+ rnz(fflN’( c), J~a~(ff~N~( c), JcN’( c))) 

+ y (IqN’(t)l: + s(rl”‘N’(t)))l 

+ mvr’(o- t)(lff~“‘(t)lf + S(rjj”‘(t))) 

= MiijN)(t), .Tl(t)). (5.3) 
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Let E > 0 and let C be a positive constant which may be different in different 
formulas. Putting (5.2) and (5.3) together, we get 

Il~‘“‘(t)l12+t(m-1-&) Iltl”~N’(t)l12+2v(lr?‘N’(t)l:+S(ij(N)(t))) 

where 

G,(t) = (2$9t) + mzijcN)( t), J’“‘(tfN’( t) + G~rj$~‘( t), JtN’( I))), 

G,(t) = r(m - 26)(rl”i““( t), J’a’(rj’N’( t), qbcN’( t))), 

G,(t) = t(m - 26)(qjN’( t), Jca)(i-j’N’( t), IcN’( t))). 

(5.4) 

By taking the scalar product of the second formula of (5.1) with JcN’( t), we have 
from (2.14) that 

From this inequality and from Lemma 6 we conclude that 

IiJ’N’wl: + weN’(N G wri’“‘wl12 + l172Wl12). (5.5) 

We are now going to estimate the terms IG,(t)l. It is easy to verify that 

Hence (5.5) leads to 

IGl(t)l <ET Ilii:N’(t)l12 + C 

x III?‘N’lll:,m (WN’(Ol12 + l172T2(~)l12). (5.6) 
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By the s-inequality we have 

F,(t)1 Q ET III?~N’(~H2 + “(m4;26)2 1114111:,, IPVN:. (5.7) 

By Lemma 5 and (5.5) we obtain 

<ET Ilii)N’(t)l12 + 
CNt(m - 26)2 

4&h 

x WN’(# mv’(~)l12 + l132;(~N2). 

By substituting (5.6)-(5.8) into (5.4), we obtain 

llr7(“‘(t)llf+r(m-1-48) 11~~N)(t)112+v(l~‘N’(t)l~+S(ij(N)(t))) 

(Iri’N’(t)l:+s(~‘N’(t))), 

dH, Ilf’“‘(t)ll’+ H,(t) Ifp(t) RCN’(t), 

where 

H, = 1 +c 1 +f llldll:,,? 
( ) 

Cz(m - 26)2 
H,(t)= -v+ 4E 

Let E be suitably small, and choose the value of m as follows. 

Case 1. IT > $. In this case we take 

(5.8) 

(5.9) 

( *a 
m>m, =max - 2a-1, l+p,+4c ) 

> 
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where p0 z 0. Then (5.9) leads to 

Ilrl’N’(oll: + POT Ilr?lN’O)l12 + v lvN’wl: 

+vt a+; [lri’N’(t)l:+s(r?‘N’(t))l, 
( > 

<Ho Ilq’N’(t)l12 + H,(t) Ilj’N’(t)l: + R’N’(t). (5.10) 

Case 2. cs = $. In this case we take 

m>m, = 1 +po +&N’+$+~E. 

From Lemmas 3 and 4 and from the fact that 

we have 

t(m- 1 -4E) Il~;N’(t)ll2+ vr2 [l$N’(t)l: + S(ijjN)(t))] 

2 POT Ilr?jN’Wl12. (5.11) 

Thus, (5.10) also holds in this case. 

Case 3. (T < $. In this case we also impose the condition that 

4h2 
’ < v( 1 - 2a)(9 + 2N2h2j 

Then if we take 

we get (5.11) and consequently (5.10). 
Now let 

E(N)(t) = lWN’(t)l12 + T c (POT Ilr?jN’(y)l12 + v lpYy)l:), 
YS& 

y<t-7 

pCN’(t) = llq’“‘(o)ll’+ z c IIR’“‘(y)l12. 
Y=Sr 

yqr--r 

581/84/2-2 
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By summing (5.10) we get 

~‘N’(t)QP(N)(f)+T 1 [H,E(N’(y)+Hl(y) Iq’“‘(y)I;]. 
Y E St 

y < I - * 

In particular, if 

i 

ml for a>$, 
2SZ m2 for C= 4, (5.12) 

m3 for o<i, 

then we may take m = 26, and so H,(t) = - v < 0. Finally, we apply Lemma 8 to get 
the following result. 

THEOREM 1. Suppose that the following conditions are fuljZled: 

(1) a, = ct2, z = O(h2), and z = O( 1/N2), 

(2) a>$or 

4h2 
’ < v( 1 - 2a)(9 + 2N2h2)’ 

(3) for all t < T we have 

Wm-2d)2(Nh-1 Il~2z(t)l12+ lI14111~.m)~w 

(4) for all t < T we have 

p(“‘( t)eHor < 
2&V 

C(m - 26)2’ 

Then for t < T we have 

EcN)( t) < pcN’( t)eHo’. 

In particular, if (5.12) holds, then the above estimate holds for all pcN’(t) and t. 

Remark. Since we have taken ~1, = CI~, the main nonlinear error terms dis- 
appear, i.e., 

(qN’(t), J’“‘(q’N’(t), #‘N’(t)))= ((qN’(t), J’“‘(tjjN’(t), pN’(t)))=O. 

If this were not the case, we would need to replace condition (4) by 



SPECTRAL-DIFFERENCEMETHOD 275 

VI. CONVERGENCE 

We now consider the question of convergence. Let tCN) = P,.+<, $(‘?‘) = PN$, 
p”)=q W)-<(N) , and 5 (N) = #(N) - tiCN). Then we have 

pN) + P,J’“‘( p) + by) f , 

-v A(pN’ + az<;N)) = PNf, + 5 My’ in R, xS,, 
I=1 

-AlpN’= r(N)+ PNf2 + My’ in s2, xS,, 

rCN)(0,x2, t)=pN)(1,X2, t)=qN’(O, x2, f)=tp)(l, X2, t)=O, 

t(N)(X1, x2, 0) = PNtO(Xl, x2) in Sz,, 

where 

M $"' = P,J'"'( tcN), ticN') - PN -----. 
> 

$N’= 6zpNJ(m)(t(N) t , PN’h 
p<(N) 

M’N’=~-- 
4 ax: 

vt;::, > 

MiN’ = vm At;tN’, 

Furthermore, we have 

FiN’ + P,J’“‘( p) + my’, J/(N) + IJ’“‘) + P,J’“‘(y + chp, lp’) 

-vA(rcN) + o$jN)) = - ;: M;N’, in S2, xSr, 
I=1 

4 
W’=~W’-~W’ 

6 9 in Q, xS,, 

F”‘CO, x2, t) = iyN’( 1, x2, t) = pyo, x2, 1) = $‘N’( 1, x2, t) = 0, 

zfCN)(X,, x2,0)=0 in a,. 
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We now estimate IM!“‘(t)l. First, we have from Lemma 1 that 

We have 

where 

ML” = p, ~‘al(<‘N’ 3 II/W’) _ 

ax, ax, ax, ax, 

Let ,u > 0 and r > 0. By Lemma I and embedding theory we get 

IIM:“Wll G Ch2 llICI(N)(~)llc~w) l15(N’(t)ll~3(1,~2(7)) 

d Ch2 II1Cl’“‘(~)llH~+‘(R) Ilr(N)(t)llH1/Z+‘(r,L2(7)) 

6 Ch2 ll~(~)ll~~+w 115~~~ll~“*+~(f,~~(7)) 

G a2 III~+~II~~+Y~) 1114111~‘1~+~(~,~~(7))~ 

llM:2’ll G c 
(II 

F(t)-E(l) 
2 2 > II 

F(*, 
I 

+ a+(N) 
IK T(‘)-~x I 

J%t))gy) 
1 

d CN -“(IW(f)ll CI(/.W(~N + Il+(f)ll Cl(i.HP+ i(7))) Ilt(N1(t)h-i(f?, 

d CN -“( 111 ‘hill ~3/2+‘(1,~“(7)) + ~~~~~~~ H112+‘(,,““+‘(7))) 1115111H2+r(0,’ 

Similarly we have 

llM:3’(Oll < CN-” ll$(N)(~N~~~~~ 

x ( 115(N’(t)11 C’(,,HJ‘(f)) + llt(t)ll C(I,H~+I(d 

d CN-” lll~lll~~+~~~~ 
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By the embedding theorem we also have 

G CT lll$lll H2+yn) 

x 
X 

(Ill l/I at H’:*+‘(I,L~(~)) 

Clearly, we also have 

lPf4(f)ll d c 
II 
c$ (t) - L,.i,(i)~/ 

1 

G a2 lll~lllc4(,,L~(7)), 

ll~dt)ll G a2 
II 
g (2) - i,,d j 

6 Ch* lilti ic*(,,~“(7)). 

Finally, an argument as in the proof of Theorem 1 leads to the following conclu- 
sion. 

THEOREM 2. Let conditions (1) and (2) of Theorem 1 hold. Also let p > 0 and 
r > 0, and assume that 

5 E C(0, r; H2+‘(Q)n C4(Z, L*(T)) A H”*+r(z, H”+‘(7)) 

n H3’2+yz, H”(7)) n H7’2+r(z, L2(7))), 

at 
-g E C(0, T; C(Z, H’(T)) n C2(Z, L2(T)) 

nH 1/2+r(Z, H’(7))n H3/2+‘(Z, L2(r)), 

g E C(0, r; C(Z, L2(11))), 

I) E C(0, T; H’+‘(Q) n C*(Z, L’(I)) 

nH ‘/*+‘(I, H”“(T))n H312+r(Z, HN(T))). 
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Then for all t d T we have 

115(t)-q’“‘(t)112<Cb*(r2+h4+N-2”), 

where b* is a positive constant dependent upon the norms appearing in the estimates 
of the terms IIM,(t)ll. 

VII. DISCUSSION 

The spectral-difference method is better than the full difference method. But the 
accuracy is still limited by the order of the difference approximation as shown in 
Tables I and II. If we were to use Chebyshev methods in the direction of non- 
periodicity, we could solve the same problem with a tremendous gain in accuracy. 

If we use the pseudospectral-difference method to solve (1.1 ), then we can save 
computation, especially for the nonlinear convective term. But for the second equa- 
tion of (1.1) it is easy to use the spectral-difference method. We shall report on a 
comparison of these methods in a future paper. 

By a skew-symmetric decomposition of the nonlinear convection terms, we can 
obtain better numerical results than by the more conventional form. But a little 
more computation is needed for calculating Fourier coefficients of the convection 
term. If we use the pseudospectral-difference method, then the computations are 
nearly the same either way. 
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