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Two-Dimensional Viscous Flow

BEN-YU GUO AND YEU-SHAN XIONG

Shanghai University of Science and Technology,
Shanghai, China

Received March 20, 1987; revised October 19, 1988

We propose a spectral-difference method for the 2-dimensional vorticity equation with a
periodic boundary condition in one direction. The solution satisfies a semidiscrete conserva-
tion law, and thus better numerical results are obtained. We also prove stability and
convergence. © 1989 Academic Press, Inc.

I. INTRODUCTION

Let &(xy, x,, t) and Y(x,, x,, t) be the vorticity and stream function, respectively.
Let the coefficient of viscosity v be positive. Let Q =7x I, where

I={x;:0<x, <1}, T={x,:0<x,<2xn},
and consider the problem

K, W NI o .
6t+6x26x1—6x16x2_vvf_f1 in Qx(0,T],

VW =E¢+f, in 2x(0, 7],
E(xy, x5, 8)=E&(x1, x, +2m, 1)  for 120, (1.1)
'//(XI,XZ’ t)=‘//(xl’x2 +2TC,1) for t>01

é(x11x2’0)=€0(x1’x2) in Q,

where

Sy, x5 + 27, 8) = fi(x;, X5, 1) for I=1,2,
Eolxy, X3 +2m) = Eo( x4, X,).

For simplicity we assume that

5(0, x2, t)=é(1’ x2’ t)=l//(0’ x2’ t)= ll’(l, x2’ t)=0
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260 GUO AND XIONG

There is a lot of literature concerning finite element and finite difference methods
to solve problem (1.1). But for any fixed scheme the accuracy of the solution is
limited, even if the solution is infinitely smooth. In the past ten years the spectral
method has been developed. See the references by Gottlieb and Orszag [1],
Pasciak [2], Kreiss and Oliger [5], Ben-yu Guo [6], and He-ping Ma and Ben-yu
Guo [7]. All of this work is for periodic problems, and thus it may not be applied
to solve (1.1). On the other hand, Murdock [9, 10] and Vanel, Peyret, and
Bontoux [11] used Chebyshev spectral methods to solve it. In this paper we follow
the idea of [8] to construct a class of spectral-difference schemes. for solving (1.1).
The key point is the use of a skew symmetric decomposition of the nonlinear
convection terms. If we choose the parameters suitably, then the numerical solution
satisfies semidiscrete conservation laws. Generalized stability (see Ben-yu Guo [12]
and Griffiths [13]) and convergence are proved. We find out that better error
estimates are obtained by using the skew symmetric decomposition with suitable
parameters.

II. THE SCHEME AND CONSERVATION LAws

Let 4 be the mesh spacing in the x,-direction with MA=1, and let
I={x;=jh1<j<M—-1} and Q,=I,xI

Let t be the mesh spacing in the r-direction, and let S, = {t=kt: k=0,1,..}.
Define

1

u, (xy, Xz, t)=z (u(x, +h, x5, 1) —u(x,, x5, 1)),

g, =u,(x —h, x,,1),
u =%(ux1(x1sx2’t)+ux1(xl’x23t))
2
du= uxlxl(xl, X2, t) +—°2' (xl’ X2, t)’
0x5

1
u, 2; (u(xb X3, t+T)‘u(x15 X2, t))

The key problem in the construction of a reasonable scheme is to simulate as
much as possible the properties of the solution of (1.1). Indeed, if f; = f, =0, then

0¢

It nax o, = [[[ (55000 9) =55 030 3) ) ez
Q

=fgfo(x1,x2)dx1 dx, (2.1)
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and

“ﬂ EX(x,, X,, 1) dx, dx,

! 0 2 P 2
+2v L) HQ [(55—1 (x4, x3, y)) +<Ef—2 (15 X y)) ]dx, dx, dy

=[] &xix) dx, dra. (22)

We shall construct a scheme, the solution of which satisfies semidiscrete conser-
vation laws. Note that

@_»za_u_ﬁza_u_i@zu)_,a_(ﬁv_u)
Ox, 0x, 0x,0x, 0x,\0x, 0%, \ dx,
_ O (Yo,
“ o5 \"ox,) "o, \"ox,)

We therefore define

ow Ju
Jl(u’ W)——Ex—;un le-a;’
0 I3}
I w) = (5 ) —% (g
X2 /5 0x,
0 Ju
J s =1 - P 5
s(u, w) ox, (wug, (W 6x2>xl

and

T w)= Y, 2 (u, w),

I=1

where o= (a,, %,, %3), each «, is positive, and Y o, = 1.
Now let

vV =span{exp{inx,}: |n| < N},

and let P, be the orthogonal projection operation onto V, i.e.,
L (Pt — )5 dx, =0

for all ve V. Let #™ and ¢ be the approximations to ¢ and y, respectively,
where
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NNy, xy, )= Y M(xy, t) exp{inx,},
|nl <N

¢M(xy, xp, )= Y. PM(xy, 1) exp{inx,}.
Inl <N

The spectral-difference scheme for (1.1) is
’IEN) +PyJ (™ + &”51\/), ¢y —v (™ + UT'7$N)) =Pyfi in 2, xS,
— AWM =yM 4P, f, in Q,%xS,,
10, x5, 1) =M1, x5, 1) = N0, x5, 1) =™ (1, x5, 1), (2.3)
(N)(xu X5,0)= ’T(N)(xl, x;)=PnEo(xy, x;) in Q,,
where 6 and o are parameters such that 0< 4, 6 <1. If 6=0=0, then (2.3) is an

explicit scheme. Otherwise, we need iteration to get n¥)(x,, x,, ) for each t€ S..
Now we introduce some notations as follows:

(utx), o))y =52 | i, x2) 1, ) s

(eI F = (u(x,), ulx1))r,

(wv)=h Y (ux,),o(x)s,

xye iy

lull? = (u, ),

1 1 Ou
ul} =3 g 17+ 5 i 1+ | 2

Assume u=v=w=0 for x, =0 or 1 and that u, v, and w are periodic in Xx,.
From Abel’s formula we obtain

(g, ) + (vg, 4) =0, (24)

ou dv
(5e0) (7)o 22)
(1, W), 1)_<6W2, >+((-gxiz) ,u)=0, (26)

(J2(u, w), 1)=<<u a—w) ) 1) = A(u, w), (2.7)
0x,5/ 4,

(Ja(u, w), 1)= —A(w, u) = A(u, w), (2.8)

which lead to
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where

1 2
m w)=%(u(1 —h), g—:; ( —h)) 5 <u(h), 5;12 (h))

7 7

We have also from (2.4) and (2.5) that
ow + ( ow v) 0
— Uy, U — ul=0,
aX2 e 5x2 );1’

ou 0
(w,el p v) + (8_x2 (wgv), u) =0.

Thus, it follows that
(J1(u, w), v) + (J2(v, w), u) =0.

Similarly, we have

0
(J3(u, W), U) + < av s wu_ﬁ) _< “ s WUJ?}) = 0
0x, X

From (2.6)-(2.10) we have

(@, w), 1) = (5 + 3) Alw, w),
(J O, w), v) + (J o, w), u) = (2, — )

x [(J2(v, w), u) + (J5(u, w), ) ].

In particular, if a; =a,, then
(J“*N(u, w), u)=0.
It is easy to show that

(u’ AU) + %(uxp vx;) + %(u)?l’ v)?z)
0
+<a" 2 )+S(u,v)=0,

ax," ox,

where
1 1
S(u, v) = T (u(h), v(h))7 + 7 (u(1 —h), v(1 = h));.

In particular, with the notation S(u)= S(u, u) we have

(du, u) + |ul + S(u)=0.
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(2.12)
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We next check the conservation laws. Assume that f; = f, =0. We first sum (2.3)
over all (x,, x;)e 2, to get from (2.11) and (2.13) that

(n'™M(0), 1), + (o +a3) A(N(2) + 6tnM(1), gN(1))
—vS(n™M(e) + otni™(1), 1) =0,

and thus

(™M), 1)) +1 Y [(oy +a3) An™(y)+ ™ (y), 6™M(»)

YES;
yEt—-1

—vS(™(y) + o™ (), 1= (n"V(0), 1). (2.15)
Second, we put «;, =a, and d=0=1 to get

ﬁ(N)(xu X, 1)= %(’T(N)(xu Xy, 1)+ ’7(N)(x1’ Xy, 1+ 1))

By taking the scalar product of the first formula of (2.3) with 24, we have from
(2.12), (2.13), and (2.14) that
™7 +2v V(1] + 2vS(HN (1)) = 0;

thus

@O+ Y (™03 +SEPE)] = In VO (2.16)

y€S:
ys€r—z

Clearly, (2.15) and (2.16) are reasonable analogues of (2.1) and (2.2), respectively.

ITII. NUMERICAL RESULTS

For convenience we take Q = (0, 1) x (0, 1) and § = ¢ =0 in our computation. We
deal with the problem with periodic boundary conditions in the x,-direction and
Dirichlet boundary conditions in the x, -direction.

Let 7, = {x,: x, = jh, 0 < j<N—1}, and define

Eoo(t)= max Ié(xl’xb t)—rl(xl’xb t)|s

(x1,x2)elyxTy

h 1/2
E0=(3 T K n-ntn o8

(xnx2ye Iyx Ty

where n(x,, x,,t) is the spectral-difference (or difference) approximation to
é(xlax23 t)'
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In this section we list two tables for two kinds of flows. All of our experiments
are for a, =a,.

ExaMmpLE 1. Let

E(xy, x5, 1) = A exp{Bsin(2nx, + Cx,) + wt},

Y(x,, x,, t)= A exp{wt }(sin 2nx, + Cx,).
The numerical results are shown in Table I. These results are for scheme (2.3) at
t=1for A=C=w=0.1, B=0.01, and 1=v=20.001. It is obvious that if we take
®, =a,, then the solutions satisfy semidiscrete conservation laws, and better

numerical results are obtained. Usually we take a; =a=5or a, =a, =03 = asin

[3, 14]. Arakawa [14] also analyzed the advantages of such choices. Table I also
shows that we get good results even for small N.

EXAMPLE 2. Let

&(xy, x5, 1) = A exp{Bsin(2nx, + Cx,) + wt},
Y(x,, x,, t)= A exp{wt} sin 2nx, sin Cx,.
We first use the spectral-difference scheme (2.3) to solve the 2-dimensional vorticity

equation. For the sake of comparsion we use the difference scheme of [3] to solve

the same problem. Let i =2n/M and let Q] be the set of lattice points in Q. We
define

U (X, Xp, 1) = (1) u(x,, x, +h, t) —u(x,, x, 1)),
uiz(xh X2, t)=ux2(x1a X3 —ﬁ’ t)a
ufz(xb X2, t) = %(uxz(xl’ X2, t)+ ui‘;(xli X2, t)),

Aﬁu(xls X25 t) = uxl)?l(xls X2, t)+ uxziz(xl, X2, t),

TABLE 1
Errors for Scheme (2.3)

M=10,N=4 M=10,N=8

(0, dy, 3) E,(1) x 10° E (1) x 10° E,(1)% 10° EL (1) % 10
(1,0,0) 0.3460 0.8759 03484 0.8658
(1,0 0.2217 0.6949 0.1906 0.5465
¢, L 0.2822 0.8696 0.1942 0.5118
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TABLE 11
Errors for Schemes (2.3) and (3.1)

Scheme (2.3) Scheme (3.1)
M=10,N=4 M=10,M=10
(aty, o3, oy) E,(t)x 10° Ey(t)x 10°
(1,0,0) 0.1753 0.2133
(3,1,0) 0.1621 0.2141
350 0.1501 0.2138

and

Jl,ﬁ(u, w)= Wi lg — Wg ls,s
Jz,ﬁ(u7 W) = (w)?zu)i‘l - (wflu))?z’

I3 alu, w)y= (Wufl)fz —(Wug,) s
3

J}ia)(us W)= Z alJI,ﬁ(ua W),

=1

where o, +a, +a; =1 and «,>0 for /=1, 2, 3. Let #* and ¢* be the finite
difference approximations to & and ¥, respectively. The difference scheme is [3]

nf()+ IO + 6tnt, ¢F) —v 44" + oty = f* in Q;xS,

(3.1)
—Agdt=n"+ 1h in Q;xS8S,.

The numerical results by using schemes (2.3) and (3.1) with § = ¢ =0 are shown in
Table I1. These results are taken at =1 for A=B=C=w=0.1 and 1=v=0.001.
It can be seen that the spectral-difference scheme (2.3) can give better results than
the difference scheme (3.1).

IV. SOME LEMMAS

In order to estimate the error, we need some lemmas.

LEMMA 1. For all u(x,, x,, t) we have

2u(2), u (), = (I D), — 7 JudD7,
2(u(t), u (1)) = (lu()1*), — 7 ulD]*.
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LEMMA 2. If u(0, x5, t)=u(l, x5, ) =0 and u(x, x5, 1) =u(x,, X, + 27, t), then

—2(u,(1), du(t)) = —2(u(t), du (1))
= [lu@)1} + S@(1)1, — 7 lufn)|} - 1S(u,).

LEMMA 3. IfueVy for x, €l,, then

a 2
\—1 <N >
O0x,
Proof. Let
u(xy, xp)= Z u,,(xl)exp{inxz}.
|nj <N
Then
du . .
gx—z—l InéN nu,(x,) exp{inx,},
and thus
ou(x,)|? R ou ||?
il S T4 SN 2, - <N2 2‘
%, | llu(x )l 7 o, [l
LemMA 4. If u(0, x5, t)=u(l, x5, t)=0, then
4 4
Nl 12 <73 flull?, llg, II2<;5 flael .

Proof. We prove the first conclusion. Because
2 1 2
|t (361, %2)" =77 |ulxy + b, x5) —ulx,, x5)|
2 2 2
SP(lu(xl +h, X5)17 + |ulxy, x3)|7),
it follows that
2 2 2 2 2 4 2
N Celly < 55 (lulxy + A7+ lux )l 7), N 7 < o5 llull

LEMMA 5. If for all x, € I, we have u(x,, x,) and v(x,, x,)€ Vy, then

2N+1
h

lluol? < lull flol).
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Proof. Let

u(xy, x)= 3 u,(x,)exp{inx,},
Inl < N

v(x, X2)= Y v,(x,)exp{inx,}.
n| <N

Then we have from [7] that

lla(x,) 00 )7 < 2N+ 1) fluCx))1F o(xe)I13-

From Jensen’s inequality we obtain

lu|*=h 3 lluCx,) v(x )7

x1ely

ShAN+1) Y Ju(x)3 o(x))3

SA2N+1) 3 u(x)F Y lo(x)l3
AN+L, o
== el = fwl)=

LEMMA 6. If u(x,, x,)€Vy for x, €l, and u(0, x,) =u(l, x,) =0, then |[ul|*<
C(|ul} + S(u)), where C, is a positive constant depending on Q,.

Proof. We consider the eigenvalue problem

—Au=lu in Q,,
u(xy, x;)=u(x,, x, +21) in Q,,

u(0, x,)=u(l,x,)=0  for x,el.
By taking the scalar product of the above equation with u, we have from (2.14) that

[l + S(u) = 4 [lu]?,

and thus

llull? <

g (1} + 5(0).
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Lemma 7 [15]. If0<u<p and ue H¥(I), then
| Pyu—ul D) S CN#~# ||u||Hﬂ(7), ||Plvu“m(7) <C HuTy-

LEMMA 8 [3]. Assume that the following conditions are satisfied.

(1) Z(t) is a nonnegative function defined on S..

2) p,a b, M,, M,, and M are nonnegative constants.
(3) H(Z) is a function such that if Z< M, then H(Z)<0.
(4) ForallteS,,

Zy<p+t Y, [MZ(y)+MyN°h™°Z*(y)+ H(Z(y))]

(5) Z(0)<p and
pexp{(M, + M,)t} <min(M;, h’/N*).
Then for all t < T we have
Z(y<pexp{(M, + M,)t}.
In particular, if M, =0 and H(Z) <0, then for all p and t, Z(1)< p exp{M,1}.

V. ERROR ESTIMATION

Let # be a Banach space and let

lulle = max [u(t)lls-
Osr<T

sIs

Define
lu(oo = max fu(xy, x,, 1),
xielpxyely
ou
Iu(t)ll,oo = max - qul(xl’XZ, t)|’ |u,\?|(x17x2’ t)ls —_(xls-xZ’ t)
xyelpxaely 6x2

(Ol 1,00 = Nl oo + (D], 0,

Waell 1, o0 = max flu()]l 1, o0 -
t<T

=

Assume that «, = a,, that T = O(h?), that = O(1/N?) and that

fi(N)(O’ x2, t) = ﬁ(N)(L x21 t) =$(N)(0’ x2’ t)= J(N)(l, xz, t) =0
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If f,, f>, and &, have the errors f;, 75, and &, respectively, then we get the solution
7™ and ¢ satisfying
A+ P O™ + 677, §)
VAV oM =Py(fi +f1)  in Q,xS,
— 4™ =™ 4 P(f> +]2) in Q,x8,
AM(x1, x5, 0) = Py(Eo(xy, x5) + Eo(xy, X,)) in Q.
Let #V) =™ — 4™ and g™ = g™ — ¢ Then it follows that

AN 4 Py TG 4 StV g 4 Fy
+ Py J O™+ atp™, g —v AGM 4 6t M)=P, ],  in Q,xS,,
—AFM =™ 4L P T, in Q,xS,,
A(N) (X1, x5, 0) = Pr&o(xy, X;) in Q, (51)

By taking the scalar product of the first equation of (5.1) with 24", we get from
Lemmas 1 and 2 and from Egs. (2.12) and (2.13) that

IFONT =T 17N = 282 (2), TGN (2), §™(1)))
+2(7(2), T (g ™(1) + 6t {M(r), (1))
= 20t(fV(1), T (M), 6(2)))
+ (15017 + SEN(1)))
+vor(IFNOIT + SH™M(1),)
—var?(I7{V(1)11 + S (1))
FM(e) fi(1)). (52)

Let m be a positive constant which will be determined later. By taking the scalar
product of the first equation of (5.1) with mt7~(¢), we obtain from Lemmas 1 and
2 and from (2.12) that

me [N + me(@V(1), T DG M), §Y(1)))
+mr(iMN(e), JOHFAe), $V(1)))
+mr(i(1), TP (M (e), §(e)))

+— 1AM + SHE™M(1))),

+mve*(o — PUFT (O] + SHV(1)))
=me(i™(e), Fi(1)). (5.3)
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Let £>0 and let C be a positive constant which may be different in different
formulas. Putting (5.2) and (5.3) together, we get

17NN + o(m — 1 =) 1AM + (1 FM(D)17 + SN (1))

w7+ 3) (VO + SE0),
+02 (mo == B (7013 + SV (0)
3 m*t

+ 3 GO <O+ {1+ 5 ol (54)
where

Gul)= (1) + mei®(a), T (e) + 51, F00)),

Gatt) = em = 28)(G0), OG0, 60,

Galt) = <lm = 281, T, FN0).

By taking the scalar product of the second formula of (5.1) with #M(¢), we have
from (2.14) that

[F0NF + SEH™M(1))

<—2—C—lll$‘”)(t)ll & (Hn‘”’(t)ll + 10013

From this inequality and from Lemma 6 we conclude that
18™(0)13 + SEN(1)) < CLUFN O + | oA DIP). (5.5)
We are now going to estimate the terms |G,(z)|. It is easy to verify that

@™, TSN (1) + dtnM(2), §7(1)))]
<ClIn™N3 o 16N,
Ime(fM(2), TS ™ (e) + den VA1), g (2)]

. Ctm?
<er 7V + == ™I . 1301
Hence (5.5) leads to

2
1G(1)] <ez [TV + C (1 +"j4_;>

N3 WAV + 1 Fa (1) (5.6)
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By the e-inequality we have

Cr(m 26)?

Go(0)] et 7V + gl o 1713 (5.7)

By Lemma 5 and (5.5) we obtain

CN —26
1Gs(1)] <ot IIﬁi”)(t)||2+~%——) V(02 [FN(0)2
N _ 2
<o (o) + 2N
<O TSI + 101 (58)

By substituting (5.6)-(5.8) into (5.4), we obtain

17N + 2m — 1= 4e) |7V + (5™ (1)) + SH™(2)))

e (0 + ;) (A0 + SEV(@)),

. (ma a—g)(r‘”w )2+ SGE1))
< Ho #0124+ Hy(0) [F0]2 + R™(0), (59)
where

H0=1+C(1 +—) il

Ct(m—26)?
L Crlm—20)°

Hl(t)=— 4c

X (%(Ilﬁ“‘”(t)ll2 + 172017 + gl f,oo),

R“‘”(t)=C<1+—) (TN + N3 o 172(D12).

Let ¢ be suitably small, and choose the value of m as follows.

Case 1. ¢>1. In this case we take

m>m1=max( ,1+p0+4s>,

o
20—1
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where p, = 0. Then (5.9) leads to
IFNUNN? + pot IFM(ON + v 17 (DI
w0+ 3) LIV 01+ SE0))
<H, 1AM + Hy(0) |50 T+ R™Y().
Case 2. o=3. In this case we take

1 vt
m>m,=1+p, +-2-er2+:1?+48.
From Lemmas 3 and 4 and from the fact that

_ [
S <45 7701,

we have

t(m—1—4de) |7V + vi? (ma—c —§> LA™ + SAEM(1))]

2 pot 177V(0)]1%.
Thus, (5.10) also holds in this case.

Case 3. o<35. In this case we also impose the condition that

< 4h?
v(1 —20)(9+2N2h?)

Then if we take

9
m>m, =<1 + Do +;—h?+varN2+4s>
vt(9 + 2N2A%)(1 — 20)\ !
x{1— ,
4h?

we get (5.11) and consequently (5.10).
Now let

EM@ =10+ L (pot IFN DI +v 15 (»)13),

yes;
yst—1

PV =170+ Y IRV

yeS:
y<t—1

581/84/2-2

273

(5.10)

(5.11)
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By summing (5.10) we get

EM<p™M)+1 Y [HEM(p)+ H,(») 1Y)
yes;
In particular, if
m;  for o>4%,
202<m, for o=1%, (5.12)
(my  for o<i,

then we may take m =24, and so H,(t)= —v <0. Finally, we apply Lemma 8 to get
the following result.

THEOREM 1. Suppose that the following conditions are fulfilled:
(1) a, =a,, t=0(h?*), and 1= O(1/N?),
(2) o=%or
4h*
TS (1= 20)0+ 2N

(3) for all t<T we have
Ct(m—26) (N~ | L1 + 181113 ) < ve,
(4) for ail t < T we have

pM(1)e™ < a:nz—ivza_)i
Then for t < T we have

EM () < p™(t)et,
In particular, if (5.12) holds, then the above estimate holds for all p™(t) and t.

Remark. Since we have taken o, =a,, the main nonlinear error terms dis-
appear, ie.,

FY2), T OGN, ™)) = (A, TDGD), FV@) =0,

If this were not the case, we would need to replace condition (4) by

2evh

(N) Hy o 7770
P < o ey
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VI. CONVERGENCE

We now consider the question of convergence. Let &V)=Py¢ ¢y =Py,
EM) = ™) _ ™) and §V = ¢ — ™). Then we have

W 4 P JEN 4 618N, Y )

5
Vv AEN 4 gt =Pyfi+ Y M in Q,xS,,

=1
— APy =EM L Py f + MY in Q,xS,
é(N)(O, X2, t)':&(N)(l’ X2, t)=!//(N)(0’ X2, t) =!//(N)(1’ X2, t) =0;

é(N)(xl,X2,0)=PN£0()C1,X2) in Qh)

where
aé(N)
M =805
oy 0 oy o
MWM=p, J@ (N), Ny_p <___.______>
2 W YT = Py 0x,0x, 0x,0x,

M(sN) = 5TPNJ(°‘)(§£N), IP(N)),

526(1\’)
MZN)=V—5)?—V§(XIQ.,
MP) =vat A&,

52l/,(N)
MEN)=—6)?—'I/%)¢

Furthermore, we have
gy BNJ(a)(g(N) +0tEW) Y™ 4 TM) 4 P T OEN + 61EW), )

s
—vA(EM + o™= - Y MM, in Q,xS,

1=1
— AN =EM MM, in Q,xS,
E(N)(O’ X2 t) = Z(N)(la X2, t) = 'Z‘(N)(Os X2, t) = $(N)(17 X2 t) = 0’
8(N)(x13 x2a0)=0 in Qh'
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We now estimate |M {V(¢)|. First, we have from Lemma 1 that

0
1M, (1)l = PN( S ()—&d z))“
¢ %
£C <Cr )
‘ 61( )—&.(2) Frl s
We have
3
M2(t = Z (2 ]
=1
where

aw(N) GC(N) al/,(N) ac(N)>

) _ (@) EN) Ny _
M PN<J (€, v ox, 0Ox, dx, 0x,

a‘//(N)ag(N) 5./,(1\/) aé(N) 6!// 6{“” aw 5£(N)>
 —— +_____ s

MP=p _
2 N(6x2 0x, ox, 0x, &x, 0x, 0x Ox,

N N
= R )
Let #>0 and r>0. By Lemma 1 and embedding theory we get
1M () < CR I ™M (O vy 1EV O 3 2y)
S CR? [ ™) 2y 1NN s erir, 20
S CR? () g2y WO w2 v, 121y

< Ch2 ”WI“ H*1(82) “]5"]}17/%'(1 1L%Dy)»

IMP|<C (‘) A )—@’. (z)) a(f::) (1
| o-gE )5 o))
X4 X5

< CN”‘(W(t)Hcm,Hm» + W cr e 1an) 1€ (O v
S CN “#(NWl pszsris, mmayy + M gz ers, s 1) WSl 2+rc)-
Similarly we have
(M P <CN Y V(D] cyey
X (IEMU v, ey + 1E e mmy)
SCN Yl 2+na)

X (N gr32ea, bamcyy WEN g2+ rr, H““(T)))-
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By the embedding theorem we also have
IM3())l < C [T DEM(2), y ™M)
<Cr “l//(N)(t)”cl(m
X (IEM O err,Lamy + NEMON e mray)

< Cr iyl H2+1(2)

(5 I )
x( |l = +(l= :
ot HY2+ (1 1XT) ot H2+rg, HV())
Clearly, we also have
03¢
Ml < |55 0~ éxl,xl(z)“
< Ch? |H’f||| CH1, LYT))»
[Ms()ll < Cr |[4E,()I < Cr “I
<[5 e [5ln)
CL LTy ot |l ety
2!//
M1 < CF | T ()=l

< Ch? |\|‘//||| 1, LTy

Finally, an argument as in the proof of Theorem 1 leads to the following conclu-
sion.

THEOREM 2. Let conditions (1) and (2) of Theorem 1 hold. Also let 1>0 and
r> 0, and assume that

EeC0, T; H*(Q)n C*I, LXD)) n H'2*"(I, H** 1(T))
A HY?+ (1, HYD) n H'? (1, L(T))),
%—f e C(0, T; C(I, HX(D)) n C*(I, L*(T))
ﬁH1/2+r(I, HI(T))ﬂ H3/2+r(1’ LZ(T)),
d3¢E .
i e C(0, T; C(I, L*(1))),
YeCO, T; H*+(Q)n C(1, LXT))
NHY2 (I HE YT ~ H2 (1, HY(D))).
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Then for all t < T we have
IE(E) ="M ()[> < Ch*(x* + h* + N ~ ),

where b* is a positive constant dependent upon the norms appearing in the estimates
of the terms | M ()|l

VII. DISCUSSION

The spectral-difference method is better than the full difference method. But the
accuracy is still limited by the order of the difference approximation as shown in
Tables I and II. If we were to use Chebyshev methods in the direction of non-
periodicity, we could solve the same problem with a tremendous gain in accuracy.

If we use the pseudospectral-difference method to solve (1.1), then we can save
computation, especially for the nonlinear convective term. But for the second equa-
tion of (1.1) it is easy to use the spectral-difference method. We shall report on a
comparison of these methods in a future paper.

By a skew-symmetric decomposition of the nonlinear convection terms, we can
obtain better numerical results than by the more conventional form. But a little
more computation is needed for calculating Fourier coefficients of the convection
term. If we use the pseudospectral-difference method, then the computations are
nearly the same either way.
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